Abstract

To assess the Caco-2 monolayer as a model for iontophoresis of drugs across a model epithelium. The apparent permeability co-efficient (Papp) of mannitol, thyrotrophin releasing hormone (TRH), dexamethasone and a range of sizes of fluorescein isothiocyanate (FITC) dextrans across Caco-2 monolayers was measured under passive and electrically stimulated conditions. Trans-epithelial electrical resistance (TEER) was determined throughout. Transmission electron micrographs (TEM) of the monolayers were taken. Confocal laser scanning microscopy (CLSM) was used to visualize the iontophoretic transport route of FITC-Dextran (MW = 20 kDa) across a Caco-2 monolayer. Application of 14.3 micro-Eq x cm(-2) across the monolayer evoked a transient drop in TEER. The drop in TEER was accompanied by statistically significant increases in fluxes of all the agents in the mucosal to serosal direction except for FD-70. TEM of test samples exhibited tight junction dilatation, in addition to intracellular vacuolisation. The iontophoresis of FD-20 was visualised with confocal laser scanning microscopy and was localised in paracellular spaces of the monolayer. The fluxes of mannitol, TRH, dexamethasone, FD-4, FD-10 and FD-20 across the Caco-2 monolayer were significantly enhanced when electric field was applied. The iontophoretic effect appeared to be directly upon tight junctions

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.