Abstract

BackgroundAn important constituent of an orthodontic appliance is orthodontic brackets. It is either the bracket or the archwire that slides through the bracket slot, during sliding mechanics. Overcoming the friction between the two surfaces demands an important consideration in an appliance design. The present study investigated the surface roughness of four different commercially available stainless steel brackets.MethodsAll tests were carried out to analyse quantitatively the morphological surface of the bracket slot floor with the help of scanning electron microscope (SEM) machine and to qualitatively analyse the average surface roughness (Sa) of the bracket slot floor with the help of a three-dimensional (3D) non-contact optical surface profilometer machine.ResultsThe SEM microphotographs were evaluated with the help of visual analogue scale, the surface roughness for group A = 0—very rough surface, group C = 1—rough surface, group B = 2—smooth surface, and group D = 3—very smooth surface. Surface roughness evaluation with the 3D non-contact optical surface profilometer machine was highest for group A, followed by group C, group B and group D. Groups B and D provided smooth surface roughness; however, group D had the very smooth surface with values 0.74 and 0.75 for mesial and distal slots, respectively.ConclusionsEvaluation of surface roughness of the bracket slot floor with both SEM and profilometer machine led to the conclusion that the average surface roughness was highest for group A, followed by group C, group B and group D.

Highlights

  • An important constituent of an orthodontic appliance is orthodontic brackets

  • Scanning electron microscope results Surface roughness scores were group A = 0—very rough surface, group C = 1—rough surface, group B = 2—smooth surface, and group D = 3—very smooth surface, respectively. This suggests that group D bracket slot floor were smoother as compared to group A, group B, and group C, respectively

  • This indicates that there were differences in the surface roughness across the four groups with group D having the smoothest surface with values 0.74 and 0.75 for the mesial and distal slots, respectively

Read more

Summary

Introduction

An important constituent of an orthodontic appliance is orthodontic brackets. One of the important constituents of an orthodontic appliance is brackets. The frictional force to the force with which the contacting surfaces are pressed together is proportional and is affected by the nature of the surface at the interface (rough or smooth, chemically reactive or passive, modified by lubricants, etc.). This is because all surfaces, smooth they are, have irregularities which are seen as large on a molecular scale, and real contact occurs at the peaks of the surface irregularities.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.