Abstract
The expense incurred in any treatment method of industrial waste is of major consideration to any manufacturer. The disposal of waste products is one of the major problems faced by the processing and manufacturing industries. Red mud is also a waste produced during the Bayer’s process of extracting alumina from the bauxite. Red mud contains traces of radioactive elements and the disposal of it gives rise to air, water and soil pollution. 77 million tons of red mud is produced annually and it has turned into a major concern of environmentalists from all over the world. To reduce the problems incurred by red mud, it is necessary to harness this waste product into a susceptible construction material thereby diminishing the problems caused to the environment. This project work explores the reasonable usage for a specific red mud contingent on its durable property. The acquired sample is stabilized by adding gypsum which increases the strength by facilitating the pozzolanic action. In this project the gypsum content is varied from 2, 4, 6, 8 and 10% by a dry load of red mud. Initially, the basic index and engineering properties of the untreated red mud were studied which can be referred to when required while conducting the main test. Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) tests were conducted for the stabilized samples and the results were compared between an untreated and treated red mud for finding the feasibility of it as a construction material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.