Abstract

Summary The understanding of rocks mechanical properties is essential for some of the petroleum industry sectors, such as drilling, well stimulation and development. Rock mechanics data, as Young's modulus and Poisson's ratio, can be obtained by the static and dynamic conditions using triaxial compressive and ultrasonic tests, respectively. This work analyses the behaviour of static and dynamic elastic properties in a set of 20 carbonate core samples and compares with other literature results. Our approach is based in fit equations to predict static properties from the dynamic data, considering the occurrence of the frictional sliding or closing of cracks and microcracks, while performing triaxial tests. The results indicated a strong relationship among the effective pressures applied, porosity, density, and the efficiency of static and dynamic property relations. Additionally, porosity type could be indicated as one of the causes of the difference between static and dynamic moduli, since the inclusion of density and porosity in the relations demonstrated a significant improvement between Young's static and dynamic modulus correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.