Abstract

Abstract A simple, yet effective algorithm is developed for evaluating two-electron Slater-type geminal and Yukawa potential integrals over Gaussian-type orbitals (GTOs), which arise in the so-called explicitly correlated methods, on the basis of the recent work of Ten-no [S. Ten-no, Chem. Phys. Lett. 398 (2004) 56; S. Ten-no, J. Chem. Phys. 126 (2007) 014108]. Gaussian quadrature is used in analogy with the Rys quadrature method for electron repulsion integrals. The quadrature grids are obtained by the two-dimensional Chebyshev interpolation. This algorithm is especially efficient for integrals over GTOs with high angular momenta, which are present owing to the use of the resolution-of-the-identity approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.