Abstract

Sericin, a silk protein, has high potential for use in biomedical applications. In this study, wound dressing membranes of Sericin (S) and Collagen (C) were prepared by glutaraldehyde cross-linking at S/C; 2:1, 1:1, 1:2, and 0:1 weight ratios. They were stable in water for 4 weeks. However, increasing the proportion of sericin had decreasing effect on the membrane stability. Water swelling property of membranes was enhanced with sericin. The highest water swelling was obtained in 1:1 group (9.06 g/g), but increasing collagen or sericin content in the membranes had a diminishing effect. Highest water vapor transmission rate was obtained with 1:2 group (1013.80 g/m(2)/day). Oxygen permeability results showed that 1:2 (7.67 mg/L) and 2:1 (7.85 mg/L) S/C groups were better than the other groups. While sericin decreased the tensile strength and elongation of membranes, it increased modulus. Sericin also increased brittleness of membranes, but their UTS range (24.93-44.92 MPa) was still suitable for a wound dressing. Membranes were not penetrable to microorganisms. Cytotoxicity studies showed that fibroblasts and keratinocytes attached and gained their characteristic morphologies. They also proliferated on membranes significantly. After 1 week of subcutaneous implantation, a fibrous capsule formed around all membranes with an acute inflammation. Sericin containing membranes showed signs of degradation (at 2nd week), while collagen only membranes remained largely intact. Eventually, sericin containing membranes degraded in 3 weeks with moderate inflammatory response. Overall results suggest that sericin/collagen membranes would be favorable as wound dressing material when sericin ratio is less than or equal to the collagen component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.