Abstract
Tuberculosis (TB) is still considered a major global public health problem in the world and there is a concern about the worldwide increase of drug-resistance (DR). This paper describes the analysis of three Mycobacterium tuberculosis isolates from a single patient collected over a long treatment period of time. DR was initially investigated through phenotypic testing, followed by line probe assays (LPAs) and whole genome sequencing (WGS). It presents an intriguing situation where a multidrug-resistant (MDR-) TB case was diagnosed and treated based only on late phenotypic drug susceptibility testing of isolate 1. During the treatment, another two isolates were cultivated: isolate 2, nine months after starting MDR-TB treatment; and isolate 3, cultivated five months later, during regular use of anti-TB drugs. These two isolates were evaluated using molecular LPA and WGS, retrospectively. All mutations detected by LPA were also detected in the WGS, including conversion from fluoroquinolones susceptibility to resistance from isolate 2 to isolate 3. WGS showed additional mutations, including some which may confer resistance to other drugs not tested (terizidone/cycloserine) and mutations with no correspondent resistance in drug susceptibility testing (streptomycin and second-line injectable drugs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.