Abstract

Nondestructive assay methods that rely on measurement of correlated gamma rays from fission have been proposed as a means to determine the mass of fissile materials. Sensitivity studies for such measurements will require knowledge of the multiplicity of prompt gamma rays from fission; however, a very limited number of multiplicity distributions have been measured. A method is proposed to estimate the average number of gamma rays from any fission process by using the correlation of neutron and gamma emission in fission. Using this method, models for the total prompt gamma ray energy from fission adequately reproduce the measured value for thermal neutron induced fission of 233U. Likewise, the average energy of prompt gamma rays from fission has been adequately estimated using a simple linear model. Additionally, a method to estimate the multiplicity distribution of prompt gamma rays from fission is proposed based on a measured distribution for 252Cf. These methods are only approximate at best and should only be used for sensitivity studies. Measurements of the multiplicity distribution of prompt gamma rays from fission should be performed to determine the adequacy of the models proposed in this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.