Abstract

The one-dimensional cutting stock problem describes the problem of cutting standard length stock material into various specified sizes while minimizing the material wasted (the remnant or drop as manufacturing terms). This computationally complex optimization problem has many manufacturing applications. One-dimensional cutting stock problems arise in many domains such as metal, paper, textile, and wood. To solve it, the problem is formulated as an integer linear model first, and then solved using a common optimizer software. This paper revisits the stochastic version of the problem and proposes a priority-based goal programming approach. Monte Carlo simulation is used to simulate several likely inventory order policies to minimize the total number of shortages, overages, and the number of stocks carried in inventory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.