Abstract

Furin (Fur) is a member of the protease convertase family; its expression is crucial for cleaving and maturing many proteins. Fur also represents a therapeutic target in cancer, autoimmune diseases, and viral infections. Pioglitazone (PGZ) and rosiglitazone (RGZ) are thiazolidinediones prescribed to type 2 diabetes patients and are structurally similar to the known Fur inhibitors naphthofluorescein (NPF) and pirfenidone (PFD). Thus, this study used molecular docking and molecular dynamics to assess and compare the affinities and the molecular interactions of these four ligands with the Fur active site (FurAct) and the recently described Fur allosteric site (FurAll). The 7QXZ Fur structure was used for molecular dockings, and for the best pose complexes, molecular dynamics were run for 100 ns. The best affinities of the ligand/FurAct and ligand/FurAll complexes were with NPF, PGZ, and RGZ, while PFD presented the lowest affinity. Asp154 was the central residue involved in FurAct complex formation, while Glu488 and Asn310 were the central residues involved in FurAll complex formation. This study shows the potential of RGZ, PGZ, and PFD as Fur competitive (FurAct) and non-competitive (FurAll) inhibitors. Therefore, they are candidates for repurposing in response to future emerging diseases through the modulation of Fur activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.