Abstract

This paper focuses on the evaluation of operational conditions such as temperature, exposure time and flux on the polarization of a Schottky electron collection CdTe detector. A Schottky ${\rm e}^ - $ collection CdTe Medipix3RX hybrid pixel detector was developed as a part of the CALIPSO-HIZPAD2 EU project. The $128 \times 128$ pixel matrix and 0.75 mm thick CdTe sensor bump-bonded to Medipix3RX readout chips enabled the study of the polarization effects. Single and quad module Medipix3RX chips were used which had $128 \times 128$ and $256 \times 256$ pixel matrices, respectively. This study reports the sensor-level and pixel-level polarization effects of the detector obtained from a laboratory X-ray source. We report that the sensor-level polarization is highly dependent on temperature, flux and exposure time. Furthermore, the study of pixel-level polarization effects led to identification of a new type of pixel behaviour that is characterised by three distinct phases and, thus, named “tri-phase” (3-P) pixels. The 3-P pixels were the dominant cause of degradation of the flat-field image uniformity under high flux operation. A new method of identifying the optimum operational conditions that utilises a criterion related to the 3-P pixels is proposed. A generated optimum operational conditions chart under the new method is reported. The criterion is used for bias voltage reset depolarization of the detector. The method successfully represented the dependency of polarization on temperature, flux and exposure time and was reproducible for multiple sensors. Operating the detector under the 3-P pixel criterion resulted in the total efficiency not falling below 95%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.