Abstract

Excess phosphorus (P) in surface runoff has significant deleterious impacts on water quality through eutrophication. Commonly, P is transported via non-point pollution and the proportion of easily plant-available reactive P (RP) among other P forms may vary significantly. Non-reactive P (NRP) can potentially contribute to the eutrophication of waterbodies, however the cleavage into bio-available P forms and eventually their biological uptake remains uncertain. This holds also true for floating treatment wetlands (FTWs) which became established as nutrient mitigation measures for surface waters in recent years. However, little information is available about the conversion and removal of NRP in FTWs. In this study, the conversion and removal of different forms of P in FTWs were investigated. Experiments were operated in batch mode and treatments consisted of (1) two concentration levels: a high P concentration of 3.0 mg/L and a low P concentration of 1.0 mg/L, and (2) four mesocosm treatments: (a) artificial roots only, (b) substrates only, (c) plants only, (d) plants and substrates. The results showed that RP removal mainly depended on sedimentation, substrate sorption, and biological assimilation. The removal of NRP mainly depended on hydrolysis, microbial-mediated conversion, and biological absorption. The combination of plant and substrate provided stable and efficient phosphorus removal performance in high P conditions, while plants were important for P removal in low P conditions. Living plants were indispensable and greatly affected the performance of FTWs. The specific enrichment and culling of microorganisms by plants resulted in the formation of specific rhizosphere microbial communities and promoted the removal of NRP. Pseudomonas, Enterobacter, Acidovorax might be responsible for P mineralization in the FTWs. Comprehensive analysis indicated that the conversion and removal pathways of P in the FTWs were not mutually independent, and the plant-microbe-substrate interactions cannot be underestimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.