Abstract
Identifying and predicting which aneurysms are likely to quickly occlude and which ones are likely to remain open following treatment with flow-diverting devices is important to develop optimal patient management strategies. The purpose of this study was to evaluate predictions based on computational fluid dynamics models using the elastase rabbit aneurysm model. A series of 13 aneurysms created in rabbits were treated with flow diverters, and outcomes were angiographically assessed at 8 weeks' follow-up. Computational fluid dynamics models were constructed from pretreatment 3D rotational angiograms and Doppler ultrasound flow velocity measurements. Postimplantation mean aneurysm inflow rate and flow velocity were used to prospectively predict aneurysm occlusion blinded to the actual outcomes. Specifically, if both variables were below their corresponding thresholds, fast occlusion was predicted, while if one of them was above the threshold, slow or incomplete occlusion was predicted. Of the 13 aneurysms included, 8 were incompletely occluded 8 weeks after treatment, and 5 were completely occluded. A total of 10 computational fluid dynamics-based predictions agreed with the angiographic outcome, reaching 77% accuracy, 80% sensitivity, and 75% specificity. Posttreatment mean velocity alone was able to achieve the same predictive power as the combination of inflow rate and velocity. Subject-specific computational fluid dynamics models of the hemodynamic conditions created immediately after implantation of flow-diverting devices in experimental aneurysms created in rabbits are capable of prospectively predicting, with a reasonable accuracy, which aneurysms will completely occlude and which ones will remain incompletely occluded.
Highlights
ObjectivesThe purpose of this study was to evaluate predictions based on computational fluid dynamics models using the elastase rabbit aneurysm model
BACKGROUND AND PURPOSEIdentifying and predicting which aneurysms are likely to quickly occlude and which ones are likely to remain open following treatment with flow-diverting devices is important to develop optimal patient management strategies
A total of 10 computational fluid dynamics–based predictions agreed with the angiographic outcome, reaching 77% accuracy, 80% sensitivity, and 75% specificity
Summary
The purpose of this study was to evaluate predictions based on computational fluid dynamics models using the elastase rabbit aneurysm model. The objective of this study was to evaluate the predictive power of previously reported subject-specific CFD models by performing a prospective analysis of aneurysm occlusion after FD treatment using elastase rabbit models
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.