Abstract

Much research on animal feed has focused on finding alternative feed ingredients that can replace conventional ones (e.g., grains and beans) to reduce feed costs. The objective of this study was to evaluate the economic, as well as nutritional value of spent coffee grounds (SCG) and Japanese mugwort (Artemisia princeps) residues (APR) as alternative feed ingredients for ruminants. We also investigated whether pre-fermentation using Lactobacillus spp. was a feasible way to increase the feed value of these by-products. Chemical analyses and an in vitro study were conducted for SCG, APR, and their pre-fermented forms. All the experimental diets for in vitro ruminal fermentation were formulated to contain a similar composition of crude protein, neutral detergent fiber and total digestible nutrients at 1x maintenance feed intake based on the dairy National Research Council (NRC). The control diet was composed of ryegrass, corn, soybean meal, whereas the treatments consisted of SCG, SCG fermented with Lactobacillus spp. (FSCG), APR, and its fermented form (FAPR). The treatment diets replaced 100 g/kg dry matter (DM) of the feed ingredients in the control. Costs were lower for the all treatments, except FAPR, than that of the control. After 24-h incubation, the NDF digestibility of the diets containing SCG and its fermented form were significantly lower than those of the other diets (P < 0.01); pre-fermentation tended to increase NDF digestibility (P = 0.07), especially for APR. Supplementation of SCG significantly decreased total gas production (ml/g DM) after 24-h fermentation in comparison with the control (P < 0.05); however, there were no significant differences between the control and the SCG or the APR diets in total gas production, as expressed per Korean Won (KRW). Diets supplemented with SCG or FSCG tended to have a higher total volatile fatty acid (VFA) concentration, expressed as per KRW, compared with the control (P = 0.06). Conversely, the fermentation process of SCG and APR significantly decreased total gas production and VFA production as expressed per KRW (P < 0.05). Because of their nutrient composition and relatively lower cost, we concluded that SCG and APR could be used as alternative feed sources, replacing conventional feed ingredients. However, pre-fermentation of agricultural by-products, such as SCG and APR, may be inappropriate for improving their nutritive considering the increase in production costs.

Highlights

  • Research on animal feed has often focused on finding alternative feed ingredients to replace conventional ones in order to reduce feed costs

  • We evaluated the economic and nutritional values of spent coffee grounds (SCG) and Japanese mugwort (Artemisia princeps) residues (APR), as well as their fermented products as potentially cost-effective feed ingredients for ruminants

  • Preparation of experimental diets The feed ingredients used in this study were ryegrass, corn, soy bean meal (SBM), SCG, APR, and the Lactobacillus-fermented forms of SCG and APR (FSCG and FAPR, respectively)

Read more

Summary

Introduction

Research on animal feed has often focused on finding alternative feed ingredients to replace conventional ones (e.g., grains and beans) in order to reduce feed costs. This is most important in developing countries where the supplies of cereal grains and beans are not great enough to support even the human population. By-products from processing crops and food products have received much attention as feed alternatives because of their consistent and mass production. Food by-products would likely be inexpensive because of their classification as a waste product. Many by-products, do not contain enough nutrients to support livestock requirements, and their palatability and digestibility would need to be enhanced, even for ruminants. Pre-fermentation of these by-products by bacteria (Han, 1975; Han, 1978), yeast (Wanapat et al, 2011), or fungi (Salman et al, 2008) are common methods to enhance their nutritional value (see Mahesh & Mohini (2013) for a review)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.