Abstract

Low-risk removal of embedded surface soiling on delicate heritage objects can require novel alternatives to traditional cleaning systems. Edvard Munch’s monumental Aula paintings (1911–16) have a long history of exposure to atmospheric pollution and cleaning campaigns that have compromised the appearance and the condition of these important artworks. Soiling removal from porous and water-sensitive, unvarnished oil paintings continues to be a major conservation challenge. This paper presents the approach and results of research into the effect and efficiency of three novel systems used for soiling removal: soft particle blasting, CO2-snow blasting, and Nanorestore Gel® Dry and Peggy series hydrogels. Cleaning tests were performed on accelerated-aged and artificially soiled mock-ups consisting of unvarnished oil paint and chalk-glue grounds. Visual and analytical assessment (magnification using a light microscope and scanning electron microscope, as well as colour- and gloss measurement) was carried out before and after mock-up cleaning tests and the results were compared to those obtained using the dry polyurethane sponges employed in the most recent Aula surface cleaning campaign (2009–11). Although the results varied, the Nanorestore Gel® series proved promising with respect to improved soiling removal efficiency, and reduced pigment loss for the water-sensitive surfaces evaluated, compared to dry sponges.

Highlights

  • The challenges of removing embedded deposited particulate soiling from historic, vulnerable works of art are well known [1]

  • Despite the low surface temperatures measured on mock-ups treated with the ­Carbon dioxide (CO2)-snow from gas source, there were no visible signs that the method affected the oil paint mock-ups other than removing soiling

  • Nanorestore Gel® MWR loaded with 0.5% w/v citric acid/NaOH at pH 6.5, followed by a clearance step with the same nano-gel loaded with adjusted water at the same pH, performed well on the mock‐up set 1 (M1)-G mock-ups on soiling removal and lack of pigment loss (Fig. 9)

Read more

Summary

Introduction

The challenges of removing embedded deposited particulate soiling from historic, vulnerable works of art are well known [1]. A few multidisciplinary studies have explored the application of these novel cleaning systems to unvarnished oil paint [19, 27,28,29,30]. This paper contributes to this research by investigating three potential cleaning systems: soft particle blasting, ­CO2-snow blasting, and the Nanorestore Gel® Dry and Peggy series hydrogels, described in more detail later. These systems were evaluated using artificially aged and artificially soiled mock-ups comprising an unvarnished cobalt blue oil paint applied to a ground layer of chalk bound in animal glue [31, 32].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.