Abstract

This paper evaluates multi-decadal simulations of the UCLA version of Climate Forecast System version 2, in which the default Noah land surface model has been replaced with the Simplified Simple Biosphere Model version-2. To examine the influence of the atmosphere–ocean (AO) interaction on the variability, two different simulations were conducted: one with interactive ocean component, and the other constrained by the prescribed sea surface temperature. We evaluate the mean seasonal climatology of precipitation and temperature, along with the model’s ability to reproduce atmospheric variability at different scales over the globe, including extratropical modes of atmospheric variability, and long-term trends of global and hemispheric temperature and regional precipitation. Here, we particularly selected two monsoon regions, East Asia and West Africa, where the simulation of multi-decadal variations which has heretofore been a challenging task, to examine decadal variation of monsoon precipitation. In general, temperature anomaly trends were better captured than those of precipitation in both simulations. Results suggest that the AO interaction, represented as latent heat flux, contributes to improve reproducibility of global-wide climatology, extratropical modes of atmospheric variability, and variability in the multi-decadal climate simulation, as well as for inter-decadal variability of the East Asian summer monsoon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.