Abstract

Abstract. Observations of carbon monoxide (CO) from the Measurements Of Pollution In The Troposphere (MOPITT) instrument aboard the Terra spacecraft were expected to have an accuracy of 10 % prior to the launch in 1999. Here we evaluate MOPITT Version 7 joint (V7J) thermal-infrared and near-infrared (TIR–NIR) retrieval accuracy and precision and suggest ways to further improve the accuracy of the observations. We take five steps involving filtering or bias corrections to reduce scatter and bias in the data relative to other MOPITT soundings and ground-based measurements. (1) We apply a preliminary filtering scheme in which measurements over snow and ice are removed. (2) We find a systematic pairwise bias among the four MOPITT along-track detectors (pixels) on the order of 3–4 ppb with a small temporal trend, which we remove on a global scale using a temporally trended bias correction. (3) Using a small-region approximation (SRA), a new filtering scheme is developed and applied based on additional quality indicators such as the signal-to-noise ratio (SNR). After applying these new filters, the root-mean-squared error computed using the local median from the SRA over 16 years of global observations decreases from 3.84 to 2.55 ppb. (4) We also use the SRA to find variability in MOPITT retrieval anomalies that relates to retrieval parameters. We apply a bias correction to one parameter from this analysis. (5) After applying the previous bias corrections and filtering, we compare the MOPITT results with the GGG2014 ground-based Total Carbon Column Observing Network (TCCON) observations to obtain an overall global bias correction. These comparisons show that MOPITT V7J is biased high by about 6 %–8 %, which is similar to past studies using independent validation datasets on V6J. When using TCCON spectrometric column retrievals without the standard airmass correction or scaling to aircraft (WMO scale), the ground- and satellite-based observations overall agree to better than 0.5 %. GEOS-Chem data assimilations are used to estimate the influence of filtering and scaling to TCCON on global CO and tend to pull concentrations away from the prior fluxes and closer to the truth. We conclude with suggestions for further improving the MOPITT data products.

Highlights

  • Carbon monoxide (CO) is an important atmospheric trace gas

  • (2) We find a systematic pairwise bias among the four Measurements Of Pollution In The Troposphere (MOPITT) alongtrack detectors on the order of 3–4 ppb with a small temporal trend, which we remove on a global scale using a temporally trended bias correction

  • It acts as an indirect greenhouse gas (GHG) as both a minor source of CO2 and by affecting OH concentrations, which in turn affects the lifetime of methane

Read more

Summary

Introduction

Carbon monoxide (CO) is an important atmospheric trace gas. It is a tracer of pollution and atmospheric transport and plays an important role in the atmospheric hydroxyl (OH) budget. About 2800 Tg CO yr−1 is emitted globally, with about 45 % of the emissions coming from oxidation of volatile organic compounds (VOCs – predominately methane and isoprene), about 25 % from biomass burning, 25 % from fossil-fuel and domestic-fuel burning, and the rest from vegetation, oceans, and geological activity (Seinfeld and Pandis, 2006) It acts as an indirect greenhouse gas (GHG) as both a minor source of CO2 and by affecting OH concentrations, which in turn affects the lifetime of methane. Continual comparisons of MOPITT observations with other systems ensure data quality and can be used to determine areas of improvement This intercomparison exercise uses the MOPITT Version 7 joint (V7J) product and ground-based NIR observations from the TCCON.

MOPITT
AirCore
Quality control filters and bias correction
Pixel-to-pixel bias
Small-region approximation
Quality control filters
Bias correction
Coincidence criteria
Overall global scaling
Systematic biases
Model assimilations
Practical considerations in intercomparisons of remote sounding retrievals
; Appendix
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.