Abstract
The pathophysiology of epilepsy remains unknown. Recent research has shown that microRNA expression changes in epileptic adults. In the present work, we aimed to identify serum microRNA expression in drug-responsive and resistant children with idiopathic general- ized epilepsy. The study included 43 (20 male and 23 female) epilepsy patients and 66 (43 male and 23 female) control subjects. The mean ages of the groups were 113.41 ± 61.83 and 105.46 ± 62.31 months, respectively. Twenty-eight epileptic patients were classi- fied as drug resistant. Thirteen of the controls were the siblings of patients with epilepsy. The study only included children with idiopathic generalized epilepsy who had normal brain mag- netic resonance imaging. The serum microRNA expressions (microRNA-181a, microRNA-155, microRNA-146, and microRNA-223) were investigated. Expressions of serum microRNA-181a, microRNA-155, microRNA-146, and microRNA-223 were previously investigated in epilepsy patients and children with febrile seizures. Therefore, these microRNAs were chosen. The expressions of serum levels of microRNAs were determined using quantitative real-time poly- merase chain reaction. The results indicated that the expressions of serum microRNA-155 and microRNA-223 were elevated in epileptic children (P < .05). The expression of the same microRNAs was also elevated in individuals with drug-resistant epilepsy compared to healthy controls (P < .05). microRNA-146a, microRNA-155, and microRNA-223 expressions were higher in drug-resistant patients than in drug-responsive children (P < .05). A logistic regression study determined that an increase of microRNA-155 was a risk for epilepsy, while a decrease of microRNA-146a risk for epilepsy. Few researchers have investigated the function of microRNAs in the develop- ment of childhood epilepsy. Our findings revealed that epilepsy patients have abnormal microRNAexpression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.