Abstract

Proper characterization of contaminants in subsurface helps to clean up effectively the contaminated sites. In this study, different methods were used to quantify non-volatile light non-aqueous phase liquid (LNAPL) and water from sample columns subjected to different water to LNAPL ratios. The objective of the study was to evaluate methods for porous media water and LNAPL contents analysis. The liquids were sampled from the sample columns using activated carbon pellets (ACP). Sample columns water content was also measured using soil moisture sensors. Dielectric mixing model (DMM) was evaluated for the estimation of LNAPL content after water and LNAPL contents of the sample columns were determined through gravimetric analysis method. The result shows that it was possible to sample both water and LNAPL using ACP proportionally but with high standard deviations. It also shows that more liquid was sampled from sample columns subjected to only one liquid compared to sample columns subjected to two liquids. On the other hand, analysis of water and LNAPL using gravimetric analysis method gave the best result although the presence of LNAPL resulted in underestimation of water content at higher LNAPL contents. Meanwhile, the presence of LNAPL modified the bulk relative permittivity (ε<sub>a</sub>) of the sample columns and resulted in overestimation of water contents measured using soil moisture sensors at higher LNAPL content. The modification of ε<sub>a</sub> was used for the estimation of LNAPL using DMM. The evaluation of the model with known water and LNAPL contents and in estimating the LNAPL content of the other sample columns shows that the model could be used for the proper estimation of LNAPL in porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.