Abstract
The use of bone scaffolds in traumatology and orthopedics is an extremely important issue. The growing number of cases of significant bone defects, in particular after revision arthroplasty, combat trauma and due to the introduction of new methods of reconstructive surgery of bones and joints, requires more detailed studies of the using different osteoplastic materials. Materials and methods. As scaffolds used 4 types of materials that are most often used in the clinic for the correction of bone defects - ceramic hydroxylapatite, beta-tricalcium phosphate, allogeneic bone matrix treated with gamma irradiation, allogeneic bone matrix scaffold. The effect of matrices on the viability of normal human fibroblasts (M19 cell line) in cell culture in vitro was studied. The viability of cells after their co-cultivation with scaffolds was determined by colorimetric method by staining with crystal violet. To obtain an osteoinductive effect used platelet-rich plasma (PRP), standardized by the method of Araki with some modifications. The proliferative activity of fibroblasts was assessed by the level of expression of the proliferation marker Ki-67 by immunocytochemical analysis. Results. It was found that the least pronounced antiproliferative effect is shown by allogeneic bone matrix treated with gamma irradiation. Data on the complex effect of co-cultivation of fibroblasts with scaffolds in the presence of PRP on cell viability and proliferative activity were obtained. It was found that PRP improves the survival of fibroblasts by 15-30 % and increases their proliferative activity by 35-75 %. Delipidization of scaffold from allogeneic bone matrix, heat-treated by local bone bank technology, increased its biocompatibility with human fibroblasts. Conclusions. According to the results of a comparative analysis of the impact of different scaffolds on the viability of normal human fibroblasts, it was found that scaffolds from allogeneic bone matrix have the least pronounced antiproliferative effect. Platelet-rich plasma has been shown to improve fibroblast survival and increase their proliferative activity. Treatment with 70 % ethyl alcohol scaffold from allogeneic bone matrix, heat-treated by local bone bank technology, increased its biocompatibility with human fibroblasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.