Abstract

The viscosity of amino acids enclosed in giant lipid vesicles ( η out) subjected to a shear flow near a solid surface has been studied using quartz crystal microbalance (QCM). This viscosity has been compared with shear viscosity for the different amino acids adsorbed on supported bilayers (SLBs) ( η in) of the lipids on quartz. Using a first approximation of vesicles as model rigid spheres, the measured viscosities and the extent of deformation of vesicles observed using optical microscopy, two non-dimensional parameters: the reduced volume and the ratio of ( η in)/( η out) have been analyzed as a function of physical parameters: vesicle substrate distance (vesicle vs. supported lipid bilayers), vesicle size and their variation as a function of the viscosity. The kinematics of the vesicles with the amino acids compared with the shear at supported lipid bilayers seems to describe a reasonable hydropathy scale for the amino acids. The results show that there is a direct correlation between the above parameters and the polarity variations in amino acids suggesting that the viscous force may be an important parameter and should be taken into account in studies on membrane proteins interacting with cells and cell adhesion in flow chambers where cell membrane and the adhesive substrate are in relative motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.