Abstract

This study determined the growth performance, correlations of linear body dimensions, slaughter performance and the fitting model of two generations of Leizhou Black Ducks. Fifteen (15) male and 225 female parents forming generation 0 were selected from the Leizhou duck population. Fifteen (15) families were created in the ratio of 1 male:15 females. Eggs from all the families were collected and numbered according to the family. Generation 1 ducklings were selected and grouped into families in the same ratio. Body weights (BWs) and linear body dimensions were recorded every 2 weeks from weeks 0 to 16. Logistic, Gompertz and Von Bertalanffy models were employed to ascertain the growth model of both sexes of Leizhou Black Ducks. Except for weeks 0–2, generation 1 families had greater BWs than the generation 0 families (p < .05). Males from both generations had significantly higher (p < .01) BWs than females at 16 weeks old. Significant positive correlations were observed between BWs and measured body dimensions for both sexes except for between BW and pelvis width (PW) where negative correlations (p > .05) were observed for males at week 10 and females at 16 weeks old. There was a significant negative correlation (p < .01) between body length and PW in males at 10 weeks. The accuracy rate of Logistic, Gompertz and Von Bertalanffy models was at 0.972 and similar was obtained by all three models with Von Bertalanffy being the best model. Live weight of generation 1 before slaughter was significantly higher (p < .01) than generation 0, whereas no significant differences were seen in the other carcass traits. These findings provide insights into breeding Leizhou Black Duck to enhance growth performance and hybrid production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.