Abstract

Common wild rice (Oryza rufipogon Griff.), the progenitor of Asian cultivated rice (O. sativa L.), is endangered due to habitat loss. The objectives of this research were to evaluate the genetic diversity of wild rice species in isolated populations and to develop a core collection of representative genotypes for ex situ conservation. We collected 885 wild rice accessions from eight geographically distinct regions and transplanted these accessions in a protected conservation garden over a period of almost two decades. We evaluated these accessions for 13 morphological or phenological traits and genotyped them for 36 DNA markers evenly distributed on the 12 chromosomes. The coefficient of variation of quantitative traits was 0.56 and ranged from 0.37 to 1.06. SSR markers detected 206 different alleles with an average of 6 alleles per locus. The mean polymorphism information content (PIC) was 0.64 in all populations, indicating that the marker loci have a high level of polymorphism and genetic diversity in all populations. Phylogenetic analyses based on morphological and molecular data revealed remarkable differences in the genetic diversity of common wild rice populations. The results showed that the Zengcheng, Gaozhou, and Suixi populations possess higher levels of genetic diversity, whereas the Huilai and Boluo populations have lower levels of genetic diversity than do the other populations. Based on their genetic distance, 130 accessions were selected as a core collection that retained over 90% of the alleles at the 36 marker loci. This genetically diverse core collection will be a useful resource for genomic studies of rice and for initiatives aimed at developing rice with improved agronomic traits.

Highlights

  • Oryza rufipogon Griff., known as common wild rice, is the progenitor of Asian cultivated rice (Oryza sativa L)

  • The number of filled spikelets per panicle and the percentage of seed setting were higher in GZ and Huilai (HL) than in the other populations. These results demonstrate that substantial differences exist between the eight common wild rice populations derived from different environments

  • Correlation coefficient analysis between quantitative traits and latitude showed that awn length had the strongest (0.75) and spikelet length had the weakest (0.02) relationship with latitude (Table 2). These results suggest that genetic differentiation in the eight populations might have arisen due to geographic isolation

Read more

Summary

Introduction

Oryza rufipogon Griff., known as common wild rice, is the progenitor of Asian cultivated rice (Oryza sativa L). Wild rice is widely distributed in the tropics and subtropics of Asia. Genetic Diversity and Construction of Core Collection of Wild Rice state key laboratory for conservation and utilization of subtropical agrobioresources (SKLCUSA-a201506 to XD Liu, http://web.scau.edu.cn/sys/index.asp). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.