Abstract
The wide bandgap (3.39)eV and large dislocation energy of the III–V semiconductor gallium nitride (GaN) make this a desirable material for charged particle spectroscopy in high temperature, high radiation environments. While other research groups have established that charged particle detectors can be fabricated from high quality, thin films of molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) grown GaN, this work demonstrates the feasibility of ionizing radiation detectors created from significantly thicker freestanding n-type GaN, grown via hydride vapor phase epitaxy (HVPE). Detectors were fabricated by depositing Ni/Au pads on n-type GaN, forming a Schottky barrier diode. Capacitance–voltage measurements on the detectors showed an intrinsic carrier concentration in the range of 10−16cm−3–10–15cm−3, and indicated an inhomogeneous distribution between diodes on the same wafer. The radiation sensitivity of the fabricated detectors was analyzed using alpha particles from an 241Am source. Charge collection efficiency (CCE) calculations from these experiments indicate an efficiency of 100 percent. The detectors were also successfully used to detect neutron induced charged particles using a Li2O foil in a neutron beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.