Abstract

The main objective of the present research is to combine the effect of scale thickness on the flow pattern and characteristics of two-phase flow that is used in oil industry. In this regard, an intelligent nondestructive technique based on combination of gamma radiation attenuation and artificial intelligence is proposed to determine the type of flow pattern and gas volume percentage in two phase flow independent of petroleum pipeline’s scale layer thickness. The proposed system includes a dual energy gamma source, composed of Barium-133 and Cesium-137 radioisotopes, and two sodium iodide detectors for recording the transmitted and scattered photons. Support Vector Machine was implemented for regime identification and Multi-Layer Perceptron with Levenberg Marquardt algorithm was utilized for void fraction prediction. Total count in the scattering detector and counts under photo peaks of Barium-133 and Cesium-137 were assigned as the inputs of networks. The results show the ability of presented system to identify the annular regime and measure the void fraction independent of petroleum pipeline’s scale layer thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.