Abstract

In this work, the degradation performance of Fe2+/PAA/H2O2 on three typical pollutants (reactive black 5, ANL, and PVA) in textile wastewater was investigated in comparison with Fe2+/H2O2. Therein, Fe2+/PAA/H2O2 had a high removal on RB5 (99%) mainly owing to the contribution of peroxyl radicals and/or Fe(IV). Fe2+/H2O2 showed a relatively high removal on PVA (28%) mainly resulting from ·OH. Fe2+/PAA/H2O2 and Fe2+/H2O2 showed comparative removals on ANL. Additionally, Fe2+/PAA/H2O2 was more sensitive to pH than Fe2+/H2O2. The coexisting anions (20–2000 mg/L) showed inhibition on their removals and followed an order of HCO3− > SO42− > Cl−. Humic acid (5 and 10 mg C/L) posed notable inhibition on their removals following an order of reactive black 5 (RB5) > ANL > PVA. In practical wastewater effluent, PVA removal was dramatically inhibited by 88%. Bioluminescent bacteria test results suggested that the toxicity of Fe2+/PAA/H2O2 treated systems was lower than that of Fe2+/H2O2. RB5 degradation had three possible pathways with the proposed mechanisms of hydroxylation, dehydrogenation, and demethylation. The results may favor the performance evaluation of Fe2+/PAA/H2O2 in the advanced treatment of textile wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.