Abstract

AbstractWhile the ERA5 reanalysis is commonly utilized in climate studies on extratropical cyclones (ETCs), only a few studies have quantified its ability in the representation of ETCs over land. To address this gap, this study evaluates ERA5's skill in representing the ETC‐associated 10‐m wind speed and the precipitation in central and eastern North America during 2005–2019. Hourly data collected from ~3000 stations, amounting to around 420 million reports stored in the Integrated Surface Database, is used as reference. For the spatial‐averaged ETC properties, ERA5 shows a good skill for wind speed with normalized mean bias (NMB) of −0.7% and normalized root‐mean‐square error (NRMSE) of 14.3%, despite a tendency to overestimate low winds and underestimate high winds. The ERA5 skill is worse for precipitation than for wind speed with NMB of −10.4% and NRMSE of 56.5% and a strong tendency to underestimate high values. For both variables, the best and worst performance is found in DJF and JJA, respectively. Negative biases are often identified over regions with stronger precipitation/wind speeds, and a systematic underestimation of wind speed is found over the Rockies with complex topography. Compared to the averaged ETCs, ERA5's performance deteriorates for the top 5% extreme ETCs with a stronger tendency to underestimate both wind speed and precipitation (NMB of −10.2% and −22.6%, respectively). Furthermore, ERA5's skill is worse for local extreme values within ETCs than for spatial averages. Our results highlight some important limitations of the ERA5 reanalysis products for studies looking at the possible impacts of ETCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.