Abstract

Primary systemic therapy (PST) for operable breast cancer enables the identification of in vivo biological markers that predict response to treatment. A total of 118 patients with T2–4 N0–1 M0 primary breast cancer received six cycles of anthracycline-based PST. Clinical and radiological response was assessed before and after treatment using UICC criteria. A grading system to score pathological response was devised. Diagnostic biopsies and postchemotherapy surgical specimens were stained for oestrogen (ER) and progesterone (PgR) receptor, HER-2 and cell proliferation (Ki-67). Clinical, radiological and pathological response rates were 78, 72 and 38%, respectively. There was a strong correlation between ER and PgR staining (P<0.0001). Higher Ki-67 proliferation indices were associated with PgR− tumours (median 28.3%, PgR+ 22.9%; P=0.042). There was no relationship between HER-2 and other biological markers. No single pretreatment or postchemotherapy biological parameter predicted response by any modality of assessment. In all, 10 tumours changed hormone receptor classification after chemotherapy (three ER, seven PgR); HER-2 staining changed in nine cases. Median Ki-67 index was 24.9% before and 18.1% after treatment (P=0.02); the median reduction in Ki-67 index after treatment was 21.2%. Tumours displaying >75% reduction in Ki-67 after chemotherapy were more likely to achieve a pathological response (77.8 vs 26.7%, P=0.004).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.