Abstract

A problem for a central crack in a plate subjected to plane strain conditions is investigated. Mode I crack loading is created by a dynamic pressure pulse applied at a large distance from the crack. It was found that for a certain combination of amplitude and duration of the pulse applied, the energy transmitted to the sample has a strongly marked minimum, meaning that with the pulse amplitude or duration moving away from the optimal values, minimum energy required for initiation of crack growth increases rapidly. The results obtained indicate a possibility to optimise energy consumption of different industrial processes connected with fracture. Much could be gained in, for example, drilling or rock pounding where energy input accounts for the largest part of the process cost. Presumably further investigation of the effect observed can make it possible to predict optimal energy saving parameters, i.e. frequency and amplitude of impacts, for industrial devices, e.g. bores, grinding machines, and hence significantly reduce the process cost. The prediction can be given based on the parameters of the media fractured (material parameters, prevalent crack length and orientation, etc.).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.