Abstract

SummaryEnergy efficiency is becoming increasingly important for computing systems, in particular for large scale High Performance Computing (HPC) facilities. In this work, we evaluate, from a user perspective, the use of Dynamic Voltage and Frequency Scaling techniques, assisted by the power and energy monitoring capabilities of modern processors to tune applications for energy efficiency. We run selected kernels and a full HPC application on 2 high‐end processors widely used in the HPC context, namely, an NVIDIA K80 GPU and an Intel Haswell CPU. We evaluate the available trade‐offs between energy‐to‐solution and time‐to‐solution, attempting a function‐by‐function frequency tuning. We finally estimate the benefits obtainable running the full code on an HPC multi‐GPU node, with respect to default clock frequency governors. We instrument our code to accurately monitor power consumption and execution time without the need of any additional hardware, and we enable it to change CPUs and GPUs clock frequencies while running. We analyze our results on the different architectures using a simple energy‐performance model and derive a number of energy saving strategies, which can be easily adopted on recent high‐end HPC systems for generic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.