Abstract

The International Commission on Radiological Protection (ICRP) internal dose assessment model, currently adopted in Japanese regulation, assumes uniform distribution of radionuclides in bone marrow blood (ICRP Publication 60). Recent studies have revealed a localization of hematopoietic stem cells (HSCs) and immune cells in the perivascular region of the bone marrow sinusoids, suggesting a need to consider nonuniform distributions of the blood source and HSCs. To evaluate energy transfer to HSCs, a simplified model of cervical vertebrae with bone tissues and blood vessels was built using data from the adult Japanese male phantom. Doses absorbed by HSCs from blood and hard bone sources were calculated using a Monte Carlo simulation, and absorbed fractions (AFs) and specific absorbed fractions (SAFs) from electrons were compared with those in the ICRP 1990 model. In the cervical vascular model, electron SAFs from sinusoidal blood in the red bone marrow (RBM) to the target perivascular region were 1.2 to 6.9 times higher than the SAF in the ICRP 1990 model, suggesting an underestimation of the RBM dose. Electrons from the cortical bone source to the perisinusoidal target exhibited energy transfer. The ICRP 1990 model underestimates electron SAFs from radionuclides in sinusoidal blood and cortical bones. A more elaborate model is needed to examine doses for the RBM and effects on hematopoietic and immune functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.