Abstract

AbstractAlthough polycyclic aromatic hydrocarbons are common contaminants in soil and are potentially carcinogenic and mutagenic, little is known about their fate in the soil/root environment. The impact of tall fescue (Festuca arundinacea Schreber) on chemical and biological transformations of benzo[a]pyrene in soil was investigated in a greenhouse experiment in which 14C‐benzo[a]pyrene was added to soil and placed in sealed chambers with and without plants. The distribution of 14C in soil, plant tissue, and CO2 was quantified. Dissipation due to mineralization and volatilization accounted for <2% of the total 14C added in both planted and unplanted chambers and was greater in the presence of plants. Plant uptake of 14C was <0.12%. Residual benzo[a]pyrene was lower in soil with plants (44%) than in the absence of plants (53%). The majority of the 14C label was associated with the soil matrix. The presence of plants enhance the degradation of highly adsorbed, recalcitrant benzo[a]pyrene in soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.