Abstract

Using a coupled method of diffusive gradients in thin films (DGT) exposure with aquatic organism bioassays, we assessed the use of DGT as a tool for estimating copper (Cu) bioavailability in contaminated waters. The DGT-accumulated Cu fraction could possibly be used as a surrogate for other assessments of metal bioavailability. The Cu concentrations in fathead minnow (Pimephales promelas) and yellow lampmussel (Lampsilis cariosa) soft tissue were compared with DGT-accumulated Cu after 2, 4, and 6 d of exposure to a Cu concentration series in static, water-only assays. The DGT-accumulated Cu was found to include free Cu ions, labile inorganic Cu complexes, and labile dissolved organic matter Cu complexes, compared with Cu speciation output from the biotic ligand model. Regressions of Cu concentrations between DGT and fathead minnow at 4 and 6 d of exposure demonstrated linear relationships. The Cu bioaccumulated in yellow lampmussel was overpredicted by DGT at Cu concentrations greater than 10 µg L-1 , which may be caused by internal regulation of Cu. The speciation component of the biotic ligand model predicted relationships between inorganic Cu and animal-accumulated Cu that were similar to predicted relationships between DGT-indicated Cu and animal-accumulated Cu at all deployment durations. Environ Toxicol Chem 2018;37:1535-1544. © 2018 SETAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.