Abstract
Analytical protocols have been adapted for the study of hydrocarbons at the trace level in the environment. Various samples, including sediments and biota, were collected from the Kuwaiti environment, treated according to the protocol and analyzed by chromatographic and spectroscopic methods. The methods used were synchronous scanning fluorescence spectroscopy (SSFS); high-performance liquid chromatography (HPLC) on C18 reversed-phase and NH2 normal-phase columns with UV and fluorescence detectors; gas chromatography on fused-silica capillary columns (GC) with flame ionization detector (FID), mass spectrometer (MS) and flame photometric detector (FPD); and high-resolution molecular spectrofluorimetry in Shpol'skii matrix at 10 K (HRSS). The different methods were found to give complementary information. SSFS was useful for fast evaluation and preliminary assessment of oil pollution during extended programs; it permitted sample selection for deeper analyses but, when applied to biota, needed special care in the clean-up procedure. GC/FID, was used to analyze saturated and ethylenic compounds and was useful for obtaining information on the origin of hydrocarbons but inconvenient for analyzing the aromatic fraction. GC/FPD was difficult to use with sediment samples and yielded little information on biota samples, although it did permit confirmation of high oil contamination in some examples. HPLC on a normal-phase column with UV and fluorescence detectors was useful for the fractionation of samples and for the separation of different families of aromatic compounds according to aromatic carbon number. GC/MS was used to quantify polycyclic aromatic hydrocarbons (PAHs) of less than four cycles but was not sensitive enough for PAHs of higher molecular weight. HRSS, however, was useful for the quantification of heavy PAHs and was also faster, could be automated, and gave accurate results. However, in an oil-pollution study, it must be backed up by the other techniques. In fact, no single analytical technique was found to be sufficient, and only judicious combinations of the tested techniques yielded adequate information on the origin of hydrocarbons in the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.