Abstract

This contribution investigate the effect of parameters for production of hydrogen by catalytic dehydrogenation of perhydrodibenzyltoluene (H18-DBT). The sensitivity of the dehydrogenation reaction to temperature (290–320 °C) is justified by an increase in degree of dehydrogenation (DoD) from 40 to 90% when using 1 wt % Pt/Al2O3 catalyst. However, the increase in temperature increases the hydrogen production rate and decreases the hydrogen purity by increasing the formation of by-products. In addition, the DoD of 96% is obtained when 2 wt % Pt/Al2O3 is used at 320 °C. The DoD obtained for Pd, Pt, and Pt–Pd catalysts is 11, 82 and 6%, respectively. Therefore, Pd is not a metal of choice for dehydrogenation of H18-DBT, in both monometallic and bimetallic system. The ab-initio density functional theory (DFT) calculations are consistent with this observation. Furthermore, dehydrogenation of H18-DBT followed 1st order reaction kinetics and the activation energies for 1 wt % Pt/Al2O3, 1 wt % Pd/Al2O3 and 1:1 wt % Pt–Pd/Al2O3 catalysts are: 205, 84 and 66 kJ/mol, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.