Abstract

Hydrogels have shown to be advantageous in supporting damaged cartilage because of its analogous to the extracellular matrix (ECM) of cartilage tissue. However, problems such as infection and inflammation are still a challenge to be solved. In terms of tissue engineering, natural materials are more advantageous than synthetic materials in biocompatibility and biodegradability status. Herein, physically blended nature-derived gellan gum (GG) hydrogel and hyaluronic acid (HA) hydrogel is suggested as a one of solution for cartilage tissue engineering material. The purpose of this study is to determine the effect of GG/HA hydrogel in vitro and in vivo. The chemical and mechanical properties were measured to confirm the compatibility of hydrogels for cartilage tissue engineering. The viability, proliferation, morphology, and gene expression of chondrocytes encapsulated in hydrogels were examined in vitro. Furthermore, the beneficial effect of the blended hydrogel was confirmed by performing the in vivo experiment. The chemical properties of hydrogels confirmed the well physically blended hydrogels. The mechanical studies of hydrogels displayed that as the content of HA increases, the swelling ratio was higher, compressive strength decreased and degradation was faster. Therefore, to use the hydrogel of GG and HA network, the proper amount must be blended. The in vitro study of chondrocytes encapsulated GG/HA hydrogel showed that the proper amount of HA enhanced the cell growth, attachment, and gene expression. The in vivo examination verified the advantageous effect of GG/HA hydrogel. Overall results demonstrate that GG/HA hydrogel is suitable for culturing chondrocyte and can be further applied for the treatment of cartilage defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.