Abstract
Doxorubicin is one of the most useful anticancer agents, but its repeated administration can induce irreversible cardiomyopathy as a major complication. The purpose of this study was to investigate doxorubicin toxicity on cardiac sympathetic neurons using iodine-131-metaiodobenzylguanidine (MIBG) and protein gene product (PGP) 9.5 immunohistochemistry, which is a marker of cardiac innervation. Wistar rats were treated with doxorubicin (2 mg/kg, i.v.) once a week for 4 (n=5), 6 (n=6) or 8 (n=7) weeks consecutively. Left ventricular ejection fraction (LVEF), calculated by M-mode echocardiography, was used as an indicator of cardiac function. Plasma noradrenaline (NA) concentration was measured by high-performance liquid chromatography (HPLC). 131I-MIBG uptake of the left ventricular wall (24 ROIs) was measured by autoradiography. 131I-MIBG uptake pattern was compared with histopathological results, the neuronal population on PGP 9.5 immunohistochemistry and the degree of myocyte damage assessed using a visual scoring system on haematoxylin and eosin and Masson's trichrome staining. LVEF was significantly decreased in the 8-week group (P<0.05). The serum NA level also showed no statistical difference until 4 weeks and was significantly increased in the 8-week group (P<0.05). MIBG uptake was decreased in the 6- and 8-week groups (P<0.05), and was closely correlated with the reduction in the number of nerve fibres on PGP 9.5 stain. Myocyte damage was seen only in the 8-week group. Neuronal population and the 131I-MIBG uptake ratio of subepicardium to subendocardium were significantly increased (P<0.05) in the 8-week group as compared with the control group. It may be concluded that radioiodinated MIBG is a reliable marker for the detection of cardiac adrenergic neuronal damage in doxorubicin-induced cardiomyopathy; it detects such damage earlier than do other clinical parameters and in this study showed a good correlation with the reduction in the neuronal population on PGP 9.5 stain. The subendocardial layer appeared to be more vulnerable to doxorubicin than the subepicardium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Nuclear Medicine and Molecular Imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.