Abstract
In this work the carbon biodegradation of exhausted grape marc (EGM) combined with other organic wastes using the turned pile composting system was studied. Four different piles were made of EGM in Pile 1, EGM mixed with cow manure and straw (CMS) in Pile 2, EGM mixed with municipal solid waste (MSW) in Pile 3 and EGM mixed with grape stalks (GS) in Pile 4. The results obtained were modelled to determine the main kinetic and stoichiometric parameters. Regarding to the rate constants of the composting processes they were increased from 0.033 d −1, the value obtained when EGM was composted alone, to 0.040 and 0.044 d −1 when MSW and GS were added, respectively as co-substrates. However, the addition of CMS reduced the rate constant. About the biodegradable carbon fractions, it was observed that the co-composting reduced significantly the remanent carbon concentration after composting in all the piles whilst increased the readily biodegradable carbon fractions from 35, the value obtained when EGM was composted alone, to 50 and 60%, respectively when MSW or GS were added. As regards the temperature profiles, only Piles 1 and 4 achieved thermal hygienization values and about the nitrogen losses, the lowest percentage of nitrogen loss took place when GS were added, because of its optimum pH and C/N initial ratio. Thus, though any of these wastes could be used for co-composting with EGM, the use of GS as co-substrate and bulking agent for the co-composting process of EGM was recommended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.