Abstract

SF <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sub> gas, an insulation medium used for gas insulated switchgear (GIS), has a high global warming potential, hence an effective alternative means is expected from the environmental perspective. The authors are focusing on CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gas, which has a lower global warming potential, as one of its potential alternatives. To use this CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gas for the actual GIS, the insulation characteristics for overvoltage waveforms generated in the actual fields (non-standard lightning impulse waveforms) must be obtained. For this purpose, the preceding study experimentally obtained and evaluated the insulation characteristics for various non-standard lightning impulse waveforms covering the surge waveforms generated in the actual field. In the present paper, the experimental results accumulated to date were comprehensively handled to conduct a study on the evaluation method of the insulation characteristics of the CO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> gas gap for non-standard lightning impulse waveforms. Consequently, similarly to the previous study using SF6 gas, the insulation characteristics could be expressed by one characteristic line using the duration as a parameter. Furthermore, after establishing an evaluation method of the insulation specification for generated waveforms based on the characteristic line and applying it to actual surge waveforms at substations as an example, it emerged that the insulation specification could potentially be reduced by about 10%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.