Abstract

Direct measurement of nitric oxide (NO) is of great importance and value for both in vitro and in vivo studies on dynamic NO bioactivity. Here, we evaluated the basic performance of a newly developed NO sensor (Innovative Instruments, Inc.). Unlike other NO sensors, the new NO sensor has a highly durable, gas-permeable coating and is affected much less by electrical interference due to its integrated structure where working and reference electrodes are combined in a single element. Calibration with NO gas showed high sensitivity of about 580 pA per nmol-NO l−1 (the detection limit 0.08 nmol-NO l−1, S/N = 3). This sensor also showed high selectivity (25 000 times and more) to NO, compared with NO-related reagents such as L-arginine, NG-monomethyl-L-arginine, acetylcholine, nitroglycerin (NTG) and tetrahydrobiopterin as well as dissolved oxygen. As an in vivo application, the sensor was located in the anaesthetized rat abdominal aorta to measure NTG-derived plasma NO. Intra-aortic infusion of 0.5 mg NTG caused a measurable increase in plasma NO level (2.0 ± 2.2 nmol l−1, mean ±SD, n = 3). In conclusion, the new NO sensor demonstrated a satisfying performance for both in vitro and in vivo applications.Correction: In the previously published version of this paper, a vertical scale bar in figure 5 was mistakenly extended and drawn as a vertical axis. This error is reported separately as a Corrigendum and the full text files attached below have been corrected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.