Abstract

In this study, we found that a new artificial crystalline structure was fabricated from an amylose analog polysaccharide without hydroxy groups at the C-2 position, i.e., 2-deoxyamylose. The polysaccharide with a well-defined structure was synthesized by facile thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization. Powder X-ray diffraction (XRD) analysis of the product indicated the formation of a specific crystalline structure that was completely different from the well-known double helix of the natural polysaccharide, amylose. Molecular dynamics simulations showed that the isolated chains of 2-deoxyamylose spontaneously assembled to a novel double helix based on building blocks with controlled hydrophobicity arising from pyranose ring stacking. The simulation results corresponded with the XRD patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.