Abstract

Co-crystals are multicomponent substances designed by the addition of two or more different molecules in a same crystallographic pattern, in which it differs from the crystallographic motif of its co-formers. The addition of highly soluble molecules, like nicotinamide, in the crystallographic pattern of ibuprofen enhances its solubility more than 7.5 times, improving the properties of this widely used drug. Several analytical solid state techniques are used to characterize the ibuprofen-nicotinamide co-crystal, being the most used: mid-infrared (ATR-FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRPD) and Raman spectroscopy. These analytical solid state techniques were evaluated to quantify a mixture of ibuprofen-nicotinamide co-crystal and its co-formers in order to develop a calibration model to evaluate the co-crystal purity after its synthesis. Raman spectroscopy showed better result than all other techniques with a combination of multivariate calibration tools, presenting lower values of calibration and prediction errors. The partial least squares regression model gave a mean error lower than 5% for all components presented in the mixture. DSC and mid-infrared spectroscopy proved to be insufficient for quantification of the ternary mixture. XRPD presented good results for quantification of the co-formers, ibuprofen and nicotinamide, but fair results for the co-crystal. This is the first report of quantification of ibuprofen-nicotinamide co-crystal, among its co-formers. The quantification is of great importance to determine the yield of the co-crystallization reactions and the purity of the product obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.