Abstract

A hydrogel-based (gellan gum) tissue mimicking material (TMM) was developed. Its acoustic and thermal properties were characterized. The hydrogel was combined with different sizes of glass spheres. The acoustic properties (attenuation coefficient and the speed of sound) were obtained as a function of the temperature range 20 to 45° C. Specific heat was determined experimentally by the standard mixture method for the same temperature range. The attenuation coefficient presented a quasi-linear dependence on the frequency, such as the most of mammalian tissues. The mean value was 0.59f 0,85 dB cm-1, at 30° C from 1 to 10MHz. The results suggest that the developed TMM has potential for several applications: development of standard dosimetry techniques, validation numerical models and determination the efficacy of hyperthermia devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.