Abstract

BackgroundSpecies-specific point-of-care tests (POCT) permit a rapid analysis of canine C-reactive protein (CRP), enabling veterinarians to include CRP in clinical decisions. Aim of the study was to evaluate a novel POCT for canine CRP (Point Strip™ Canine CRP Assay) run on a small in-house-analyzer (Point Reader™ V) using lithium heparin plasma and to compare assay performance to an already established canine CRP assay (Gentian Canine CRP Immunoassay) run on two different bench top analyzers serving as reference methods (ABX Pentra 400, AU 5800).Linearity was assessed by stepwise dilution of plasma samples with high CRP concentrations. Limit of quantification (LoQ) was determined by repeated measurements of samples with low CRP concentrations. Coefficient of variation (CV) at low (10–50 mg/l), moderate (50–100 mg/l), and high (100–200 mg/l) CRP concentrations was investigated as well as possible interferences. Method comparison study was performed using 45 samples of healthy and diseased dogs. Quality criteria were fulfilled if the total observed error (TEobs = 2CV% + bias%) was below the minimal total allowable error of 44.4% (TE min). Additionally, a reference range (n = 60 healthy dogs) was established.ResultsLinearity was present at CRP concentrations of 10–132 mg/l (≙ 361 mg/l CRP with reference method) with a LoQ set at 10 mg/l. At moderate to high CRP concentrations, intra- and inter-assay CVs were ≤ 8% and ≤ 11% respectively, while CVs ≤ 22% and ≤ 28% were present at low concentrations. No interferences were observed at concentrations of 4 g/l hemoglobin, 800 mg/l bilirubin and 8 g/l triglycerides. Method comparison study demonstrated an excellent correlation with both reference methods (r = 0.98 for ABX Pentra 400; 0.99 for AU 5800), though revealing a proportional bias of 19.7% (ABX Pentra 400) and 10.7% (AU 5800) respectively. TEobs was 26.7–31.9% and 16.7–21.9% and thus < TEmin. Healthy dogs presented with CRP values ≤11.9 mg/l.ConclusionsThe POCT precisely detects canine CRP at clinically relevant moderate and high CRP concentrations. The assay correlates well with both reference methods. Due to the bias, however, follow-up examinations should be performed with the same assay and analyzer.

Highlights

  • Species-specific point-of-care tests (POCT) permit a rapid analysis of canine C-reactive protein (CRP), enabling veterinarians to include CRP in clinical decisions

  • A commercially available canine CRP assay was introduced on the market that is designed to be run on automated large bench top analyzers

  • Method validation Ease of use The investigated point-of-care analyzer demonstrated to be a user-friendly in-house analyzer which could be used after a short training period

Read more

Summary

Introduction

Species-specific point-of-care tests (POCT) permit a rapid analysis of canine C-reactive protein (CRP), enabling veterinarians to include CRP in clinical decisions. Aim of the study was to evaluate a novel POCT for canine CRP (Point StripTM Canine CRP Assay) run on a small in-house-analyzer (Point ReaderTM V) using lithium heparin plasma and to compare assay performance to an already established canine CRP assay (Gentian Canine CRP Immunoassay) run on two different bench top analyzers serving as reference methods (ABX Pentra 400, AU 5800). Linearity was assessed by stepwise dilution of plasma samples with high CRP concentrations. Limit of quantification (LoQ) was determined by repeated measurements of samples with low CRP concentrations. Coefficient of variation (CV) at low (10–50 mg/l), moderate (50–100 mg/l), and high (100–200 mg/l) CRP concentrations was investigated as well as possible interferences. In the past, the measurement of canine CRP was hampered by the lack of a species-specific test available for veterinary practices and clinics. Patients with severe inflammatory processes are often presented as emergency cases, so that a rapid measurement of CRP is desirable

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.