Abstract

The bone cannot be evaluated using magnetic resonance attenuation correction (MRAC) with the Dixon sequence. To solve this issue, the present study aimed to evaluate model-based AC for whole-body 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/magnetic resonance imaging (MRI) by creating bone segmentation. We analyzed and evaluated the data of 31 consecutive patients. The Biograph mMR (Siemens Healthcare) was used for clinical whole-body 18F-FDG PET/MRI with the conventional MRAC method, and OSIRIX MD software was used to analyze the images. After the examination, the new model-based post-processing MRAC was applied to create μ-maps with bone segmentation, and retrospective PET reconstruction was performed using this μ-map. The bone structures of all patients created using model-based MRAC were visually evaluated. Standard uptake values (SUVs) at 11 anatomical positions in PET images, corrected using the μ-map with and without bone segmentation, were measured and compared. The model-based post-processing MRAC was run for all patients, without errors. Visual evaluation revealed that the model-based post-processing MRAC exhibited poor results for six patients. Furthermore, it exhibited an increasing trend of SUV in the brain compared to the conventional method. Locations other than the brain indicated a similar or decreasing trend. The two methods showed a good linear correlation for all patients. However, patients aged < 20years exhibited a different trend from those aged ≥ 20years. We should exercise caution when applying this model-based MRAC for younger patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.