Abstract

Due to the emerging role of protein kinase CK2 as a molecule that participates not only in the development of some cancers but also in viral infections and inflammatory failures, small organic inhibitors of CK2, besides application in scientific research, may have therapeutic significance. In this paper, we present a new class of CK2 inhibitors-3-carboxy-4(1H)-quinolones. This class of inhibitors has been selected via receptor-based virtual screening of the Otava compound library. It was revealed that the most active compounds, 5,6,8-trichloro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (7) (IC(50) = 0.3 microM) and 4-oxo-1,4-dihydrobenzo[h]quinoline-3-carboxylic acid (9) (IC(50) = 1 microM), are ATP competitive (K(i) values are 0.06 and 0.28 microM, respectively). Evaluation of the inhibitors on seven protein kinases shows considerable selectivity toward CK2. According to theoretical calculations and experimental data, a structural model describing the key features of 3-carboxy-4(1H)-quinolones responsible for tight binding to CK2 active site has been developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.