Abstract

The focus of this study was to test the hypothesis that there would be no difference between the biocompatibility of resin-modified glass ionomer cements. Sixty male Wistar rats were selected and divided into four groups: Control Group; Crosslink Group; RMO Group and Transbond Group. The materials were inserted into rat subcutaneous tissue. After time intervals of 7, 15 and 30 days morphological analyses were performed. The histological parameters assessed were: inflammatory infiltrate intensity; reaction of multinucleated giant cells; edema; necrosis; granulation reaction; young fibroblasts and collagenization. The results obtained were statistically analyzed by the Kruskal-Wallis and Dunn test (P<0.05). After 7 days, Groups RMO and Transbond showed intense inflammatory infiltrate (P=0.004), only Group RMO presented greater expression of multinucleated giant cell reaction (P=0.003) compared with the control group. After the time intervals of 15 and 30 days, there was evidence of light/moderate inflammatory infiltrate, lower level of multinucleated giant cell reaction and thicker areas of young fibroblasts in all the groups. The hypothesis was rejected. The Crosslink cement provided good tissue response, since it demonstrated a lower level of inflammatory infiltrate and higher degree of collagenization, while RMO demonstrated the lowest level of biocompatibility.

Highlights

  • The resin modified glass ionomer cement (RMGIC), the hybrid version of conventional glass ionomer cement (GIC), is composed of glass particles, acids, initiators, additives and a resinous system of organic monomers (Corekci et al 2013)

  • Studies in vitro have demonstrated that the RMGICs are capable of inducing cytotoxic effects on oral tissues, due to the presence of substances released during polymerization, such as hydrophilic monomers (Angelieri et al 2011, Corekci et al 2013, Selimović-Dragaš et al 2012, Xie et al 2008)

  • In the time interval of 7 days, the presence of chronic inflammatory infiltrate was observed in all the groups, it was shown to be more intense in the RMO and Transbond groups (P=0.004)

Read more

Summary

Introduction

The resin modified glass ionomer cement (RMGIC), the hybrid version of conventional glass ionomer cement (GIC), is composed of glass particles, acids, initiators, additives and a resinous system of organic monomers (Corekci et al 2013). Studies in vitro have demonstrated that the RMGICs are capable of inducing cytotoxic effects on oral tissues, due to the presence of substances released during polymerization, such as hydrophilic monomers (Angelieri et al 2011, Corekci et al 2013, Selimović-Dragaš et al 2012, Xie et al 2008) These studies have evaluated the biologic properties of RMGICs, in vivo models are required to provide a more critical analysis with regard to the biocompatibility of these resin cements (Zhou et al 2011). This is one of the most important properties to be evaluated, because these biomaterials may trigger inflammatory reactions in adjacent tissues by direct interaction with the tissues or the solubility of the components in the oral cavity (Malkoc et al 2010, Santos et al 2014a, Selimović-Dragaš et al 2012)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.