Abstract

It is significant for the evaluation and prediction of the performance degradation of rolling bearings. However, the degradation stage division of the rolling bearing performance is not obvious in traditional methods, and the prediction accuracy is low. Therefore, an Attention-LSTM method is proposed to improve the evaluation and prediction of the performance degradation of rolling bearings. First, to reduce the uncertainty of the manual intervention, performance degradation characteristic indexes of rolling bearings are evaluated and screened by the correlation, the monotonicity, and the robustness. Second, the original characteristic indicator curve is divided into the Health Indicator (HI) curve and the residual curve by means of fixed-window averaging to quantitatively and intuitively reflect the deterioration degree of the rolling bearing performance. Finally, the Attention mechanism is combined with the LSTM model, and a scoring function is established to enhance the prediction accuracy. The scoring function is used to adjust the intermediate output state weight of the LSTM model and improve the prediction accuracy. The appropriate network structure and the parameter configuration are determined, and the prediction model of rolling bearing degradation performance is established. Compared with other models, the method proposed by this paper makes full use of the historical data and is more sensitive to the key information in the long time series, and the eRMSE index and the eMAE index of the two sets of experimental data are minimum, and the prediction accuracy of rolling bearing degradation performance is higher. The model has the strong robustness and the generalization ability, which has the important engineering practical value for the prediction of the equipment health state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.