Abstract
This study evaluates the applicability of different models of coordinate transformation between local and global geodetic datums. The results indicate the grid-based method as the best solution, assuming a sufficient density of tie points. Transformation based on a limited number of tie points, which do not reflect the real state of the survey basis in a particular area, have limited possibilities to reduce nonuniform and unequally distributed distortions that are usually found in the spatial data. This inevitably leads to the degradation of accuracy of transformation results, which is unacceptable. By using the optimal resolution grid model, which includes geodetic points from the area of the cadastral municipality that is being transformed, much better results are achieved compared to the model of distortion shifts used in the Federation of Bosnia and Herzegovina.
Highlights
This study evaluates the applicability of different models of coordinate transformation between local and global geodetic datums
NedimTuno, Admir Mulahusić, Simona Savšek, Dušan Kogoj |TESTIRANJE IN IZBOLJŠAVA HORIZONTALNE DATUMSKETRANSFORMACIJE: ŠTUDIJA PRIMERAV BOSNI IN HERCEGOVINI | EVALU
Utež pomika identične točke je obratnosorazmerna kvadratu oddaljenosti te točke od točke grida
Summary
2.1 Transformacija z gridnim modelom pomikov Ko sta koordinatna sistema (geodetska datuma) A in B definirana s 3D-kartezičnimi koordinatami. (X, Y, Z), je transformacija točke j iz sistema A v sistem B s 7-parametrično Helmertovo podobnostno transformacijo (model Burša-Wolf ) definirana z izrazom (Mulahusić in sod., 2017):. Zgornja predpostavka pri obravnavi transformacije med datumi različnih lastnosti nima podlage. Ena takšnih rešitev je transformacija na podlagi grida pomikov, ki se uporablja v FBiH. Ta transformacija temelji na konformnem premiku datuma in uporabi modela pomikov. Na vsaki točki grida pomikov oddaljenosti enega kilometra so bile komponente pomikov izračunane kot splošna aritmetična sredina pomikov na identičnih točkah, ki so blizu točke grida. Utež pomika identične točke je obratnosorazmerna kvadratu oddaljenosti te točke od točke grida. Komponente pomika v poljubni točki, ki se transformira, izračunamo z znanimi transformacijskimi parametri najbližjih točk grida z uporabo bilinearne interpolacije. Podrobnosti te transformacije so opisane v navedeni literaturi (Božinov in sod., 2011; FGU, 2015a; FGU, 2015b)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.