Abstract

Soil salinization is one of the major problems in global agricultural production. Cotton is a pioneer crop with regard to salt stress tolerance, and can be used for saline-alkali land improvement. The large-scale detection of salt tolerance traits in cotton accessions, and the identification of elite quantitative trait loci (QTLs)/genes for salt-tolerance have been very important in salt tolerance breeding. Here, 43 advanced salt-tolerant and 31 highly salt-sensitive cultivars were detected by analyzing ten salt tolerance related traits in 304 upland cotton cultivars. Among them, 11 advanced salt-tolerance and eight highly salt-sensitive cultivars were consistent with previously reported results. Association analysis of ten salt-tolerance related traits and 145 SSRs was performed, and a total of 95 significant associations were detected; 17, 41, and 37 of which were associated with germinative index, seedling stage physiological index, and four seedling stage biochemical indexes, respectively. Of these associations, 20 SSR loci were simultaneously associated with two or more traits. Furthermore, we detected 117 elite alleles associated with salt-tolerance traits, 4 of which were reported previously. Among these loci, 44 (37.60%) were rare alleles with a frequency of less than 5%, 6 only existed in advanced salt-tolerant cultivars, and 2 only in highly salt-sensitive cultivars. As a result, 13 advanced salt-tolerant cultivars were selected to assemble the optimal cross combinations by computer simulation for the development of salt-tolerant accessions. This study lays solid foundations for further improvements in cotton salt-tolerance by referencing elite germplasms, alleles associated with salt-tolerance traits, and optimal crosses.

Highlights

  • With frequent extreme weather conditions and climate change, there is the urgent need to breed new crop varieties that are adaptable to adverse environments such as drought, heat, submergence, and high salinity

  • In 2012, the 304 upland cotton cultivars were planted in the Jiangpu experimental station of Nanjing Agricultural University, Nanjing, Jiangsu Province, China, for reproduction and sampling, and grown using normal field practices

  • The results showed that the most likely number of subpopulations (K) was seven, according to maximum LnP (D) values and the maximum ΔK value (Fig 1A and 1B), which indicated that the entire population could be divided into seven subpopulations (Fig 1C)

Read more

Summary

Introduction

With frequent extreme weather conditions and climate change, there is the urgent need to breed new crop varieties that are adaptable to adverse environments such as drought, heat, submergence, and high salinity. Soil salinization is one of the major problems challenging global agricultural production. It is reported that more than 6% of the 800 million hectares of land throughout the world are salt affected [1]. To effectively solve this, identifying keys genes for PLOS ONE | DOI:10.1371/journal.pone.0151076. Accessions and Elite Alleles Related to Salt Tolerance in Cotton To effectively solve this, identifying keys genes for PLOS ONE | DOI:10.1371/journal.pone.0151076 March 4, 2016

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.